Automatic Estimation of Tree Position and Stem Diameter Using a Moving Terrestrial Laser Scanner

نویسندگان

  • Ivar Oveland
  • Marius Hauglin
  • Terje Gobakken
  • Erik Næsset
  • Ivar Maalen-Johansen
چکیده

Airborne laser scanning is now widely used for forest inventories. An essential part of inventory is a collection of field reference data including measurements of tree stem diameter at breast height (DBH). Traditionally this is acquired through manual measurements. The recent development of terrestrial laser scanning (TLS) systems in terms of capacity and weight have made these systems attractive tools for extracting DBH. Multiple TLS scans are often merged into a single point cloud before the information extraction. This technique requires good position and orientation accuracy for each scan location. In this study, we propose a novel method that can operate under a relatively coarse positioning and orientation solution. The method divides the laser measurements into limited time intervals determined by the laser scan rotation. Tree positions and DBH are then automatically extracted from each laser scan rotation. To improve tree identification, the estimated center points are subsequently processed by an iterative closest point algorithm. In a small reference data set from a single field plot consisting of 18 trees, it was found that 14 were automatically identified by this method. The estimated DBH had a mean differences of 0.9 cm and a root mean squared error of 1.5 cm. The proposed method enables fast and efficient data acquisition and a 250 m2 field plot was measured within 30 s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms

acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...

متن کامل

Single Tree Stem Profile Detection Using Terrestrial Laser Scanner Data, Flatness Saliency Features and Curvature Properties

A method for automatic stem detection and stem profile estimation based on terrestrial laser scanning (TLS) was validated. The root-mean-square error was approximately 1 cm for stem diameter estimations. The method contains a new way of extracting the flatness saliency feature using the centroid of a subset of a point cloud within a voxel cell that approximates the point by point calculations. ...

متن کامل

Automated Low-cost Terrestrial Laser Scanner for Measuring Diameters at Breast Height and Heights of Forest Trees

Terrestrial laser scanner is a kind of fast, high‐precision data acquisition device, which had been more and more applied to the research areas of forest inventory. In this study, a kind of automated low‐cost terrestrial laser scanner was designed and implemented based on a two‐dimensional laser radar sensor SICK LMS‐511 and a stepper motor. The new scanner was named as BEE, which can scan the ...

متن کامل

Tree Stem and Height Measurements using Terrestrial Laser Scanning and the RANSAC Algorithm

Terrestrial laser scanning is a promising technique for automatic measurements of tree stems. The objectives of the study were (1) to develop and validate a new method for the detection, classification and measurements of tree stems and canopies using the Hough transformation and the RANSAC algorithm and (2) assess the influence of distance to the scanner on the measurement accuracy. Tree detec...

متن کامل

A novel method for locating the local terrestrial laser scans in a global aerial point cloud

In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017